$n$-convexity and majorization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential convexity for majorization

* Correspondence: [email protected] Department of Mathematics, University of Karachi, University Road, Karachi, Pakistan Full list of author information is available at the end of the article Abstract In this article, we give more generalized results than in Anwar et al. (2010) and Latif and Pečarić (2010) in new direction by using second-order divided difference. We investigate the expone...

متن کامل

Notes on Inequality Measurement : Hardy, Littlewood and Polya, Schur Convexity and Majorization

Winter School on Inequality and Collective Welfare Theory "Risk, Inequality and Social Welfare" January 10-13 2007, Alba di Canazei (Dolomites)

متن کامل

Linear preservers of Miranda-Thompson majorization on MM;N

Miranda-Thompson majorization is a group-induced cone ordering on $mathbb{R}^{n}$ induced by the group of generalized permutation with determinants equal to 1. In this paper, we generalize Miranda-Thompson majorization on the matrices. For $X$, $Yin M_{m,n}$, $X$ is said to be  Miranda-Thompson majorized by $Y$ (denoted by $Xprec_{mt}Y$) if there exists some $Din rm{Conv(G)}$ s...

متن کامل

Convexity of resistive n-ports

2014 Linear reciprocal resistive n-ports manifest convex (downward concave) property in view of their positive definite character. Several useful theorems for resistive n-ports are proved by electrical circuit considerations. The suggested line of physical reasoning via n-ports is potent for deriving a variety of matrix inequalities for positive definite operators. Tome 41 No 5 1 er MARS 1980 L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1989

ISSN: 0035-7596

DOI: 10.1216/rmj-1989-19-1-303